N800C # Non-Silicone Thermal Conductive Pad Non-Silicone Thermal Compound N800C is made of non-silicon resin material. No low molecular siloxane volatilization and low total volatile gas, no electrical contact & pollution problems. N800C is flexible and has great thermal conduction, Low compressive stress and high compressive characteristics can effectively reduce the stress load of components, so that the equipment only needs to bear less mechanical stress, and at the same time, it can have low thermal resistance and high thermal conductivity. #### **■ FEATURES** - / Thermal conductivity:17.0 W/m*K / It's made by non-silicone resin materials - / Low contact thermal resistance - / With electrical insulation - / Outstanding thermal conductivity - / Applicable to optical and sensitive electric components # **■ TYPICAL APPLICATION** - / HDDS - / Optical appliance - / 5G base station & infrastructure - / EV electric vehicle ## **■ SPECIFICATIONS** - / Sheet form - / Die-cut parts ## **■ TYPICAL PROPERTIES** | - THIOALTROI ERTIES | | | | |---|--|---|--| | PROPERTY | N800C | TEST METHOD | UNIT | | Color | Gray | Visual | - | | Surface tack 2-side/1-side | 2 | - | - | | Thickness | Customized | ASTM D374 | mm | | Density | 3.3 | ASTM D792 | g/cm³ | | Hardness | 50 | ASTM D2240 | Shore OO | | Tensile Strength | 0.15 | ASTM D412 | Kgf/cm ² | | Application temperature | -60~125 | - | °C | | Low molecular Siloxane
(D3 to D20 total) | N.D | Gas
Chromatography | % | | Outgassing CVCM (wt%) | 0.0043 | By LiPOLY | - | | ROHS & REACH | Compliant | - | - | | COMPRESSION@1.0mm | | | | | Deflection @10 psi | 8 | ASTM D5470 modify | % | | Deflection @20 psi | 28 | ASTM D5470 modify | % | | Deflection @30 psi | 55 | ASTM D5470 modify | % | | ELECTRICAL | | | | | Dielectric breakdown | 8 | ASTM D149 | KV/mm | | Surface resistivity | >1011 | ASTM D257 | Ohm | | Volume resistivity | >1010 | ASTM D257 | Ohm-m | | THERMAL | | | | | Thermal Conductivity | 17.0 | ASTM D5470 | W/m*K | | Thermal impedance@10 psi | 0.122 | ASTM D5470 | °C-in²/ W | | Thermal impedance@20 psi | 0.103 | ASTM D5470 | °C-in²/ W | | Thermal impedance@30 psi | 0.058 | ASTM D5470 | °C-in²/ W | | (D3 to D20 total) Outgassing CVCM (wt%) ROHS & REACH COMPRESSION@1.0mm Deflection @10 psi Deflection @20 psi Deflection @30 psi ELECTRICAL Dielectric breakdown Surface resistivity Volume resistivity THERMAL Thermal Conductivity Thermal impedance@10 psi Thermal impedance@20 psi | 0.0043 Compliant 8 28 55 8 >10¹¹ >10¹⁰ 17.0 0.122 0.103 | Chromatography By LiPOLY - ASTM D5470 modify ASTM D5470 modify ASTM D5470 modify ASTM D149 ASTM D257 ASTM D257 ASTM D257 ASTM D5470 ASTM D5470 ASTM D5470 ASTM D5470 | - % % % % KV/mn Ohm Ohm-n W/m*k °C-in²/\ | The chemical formula indicates that if Cyclic polydimethylsilox-ane (HO-[Si(CH3)20]n-H) is non-reaction, it's volatile anytime and everywhere. For example, when the electric products which has been put in a confined space, the volatile of low-molecular-weight silox-anes will makes the elecetic products uncontacted. # Thermal Resistance vs. Pressure vs. Deflection